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Introduction 

This document explains how the I/O manager and a stack of layered drivers interact to carry out completion 
of an I/O operation. It is completely based on two articles published on The NT Insider ([1], [2]) and does not 
add new information to what is presented in them. Rather, it tries to present a synthesis of their content in a 
way which may result more understandable to a less experienced reader. 

Both [1] and [2] contain more information than what is presented here, but may be easier to understand after 
having read this document. 

Test code is provided, albeit minimal, which comprises a driver and a client program. The client program 
opens an handle to the driver’s device and executes an asynchronous read operation. By commenting and 
uncommenting various portions of code, the behavior of the I/O manager seen by the client can be 
examined. 

The test driver includes all the test cases as part of its DispatchRead() routine. Again, by 
commenting/uncommenting portions of code its possible to examine the result of different completion 
behaviors from the driver. 

Caution: the purpose of many tests is to observe how I/O operations may be left unfinished inside the 
system or how bad behavior can cause bug checks. You’ll need an “expendable” test machine for that. 

See Building The Sample Code for details on the build process. 

The tests described in this document have been performed on Windows XP SP 1. 

Effect of The Dispatch Routine Returning STATUS_PENDING 

To begin with a simple scenario, we will consider for now a single driver, without lower level drivers beneath 
itself and we will analyze how the I/O manager reacts to the NTSTATUS value returned by the driver 
Dispatch routines. 

In this section we will discuss what  happens when the I/O manager receives STATUS_PENDING. 

The I/O manager returns this information to the program which initiated the I/O operation.  

To better understand how, we can use the test code. In order to perform this test, DispatchRead() inside the 
driver code must not do anything except returning STATUS_PENDING; all the rest must be commented out. 
In TestClt.cpp, it’s better to have the call to GetOverlappedresult() and the code below it, which tests its 
return status, uncommented. 

If we execute the test client, we see that ReadFile() returns with ERROR_IO_PENDING and 
GetOverlappedResult() blocks. If we had tried to execute a synchronous read, ReadFile() would have 
blocked. 

It’s worth to note a few points here: 

 for this to happen it is enough that the driver is returning STATUS_PENDING, regardless of whether 
it has called IoMarkIrpPending(). 

 if the client is making asynchronous I/O, control is returned to it. 

 in a highest level driver called directly by the I/O manager, the dispatch routine is called in the 
context of the thread which initiated the I/O operation (see, for instance, the section titled Dispatch 
Routines and IRQLs in the DDK Help). This means that only when the dispatch routine returns, the 
user mode caller may get something back. For instance, calling IoMarkIrpPending() does not mean 
the user mode thread returns from the I/O API with ERROR_IO_PENDING. Actually, the user mode 
thread is the same one who is living in kernel mode and executing the dispatch routine. 

If the dispatch routine just returns STATUS_PENDING, without doing anything else, the I/O never 
completes. Even an attempt to terminate the process blocked on GetOverlappedResult() fail: the process 
does not close. 

Furthermore, if the thread does not call GetOverlappedResult()  so that it does not block, and tries to go on 
until it terminates, its termination is suspended, because of the unfinished IRP. 
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It’s possible to observe this with the test code by commenting the call to GetOverlappedResult() in the test 
client: the program executes until it returns from wmain(), but then does not close. 

It turns out that to allow the process to terminate, we should handle cancellation of IRPs. An excellent 
explanation of how to do this can be found in [3]. 

Proper completion of a pending IRP 

Everybody has probably been told too many times that, in order to properly handle a pending IRP we should: 

 call IoMarkIrpPending() 

 queue the IRP for some later processing (StartIo(), etc.) 

 return STATUS_PENDING 

 the code doing the later processing will call IoCompleteRequest() for the IRP. 

The call to IoCompleteRequest() may happen in a different thread from the one executing the dispatch 
routine. It may happen after the dispatch routine returns with STATUS_PENDING, or even before it does. 

[1] explains that IoCompleteRequest() does the following: 

 calls an eventual completion routine attached to the IRP 

 checks inside the current I/O stack location for this IRP, looking into the Control field. If the 
SL_PENDING_RETURNED bit inside this field is set, it enqueues an APC for the thread which 
initiated the I/O operation (I am not beign 100% accurate here, but we will return on this later). This 
is the thread which executed the dispatch routine and which may have already returned 
STATUS_PENDING or may lie pre-empted inside the dispatch routine. 

The APC will execute I/O manager code which will return the result of the I/O operation to the calling 
process, copying it into its address space. Then this code will destroy the IRP. This is the code 
which finalizes the I/O operation. 

The SL_PENDING_RETURNED bit is set when IoMarkIrpPending()is called for our IRP. It is set in 
the current I/O stack location. This can be verified by inspecting wdm.h, because IoMarkIrpPending() 
is actually a macro defined there. 

If the SL_PENDING_RETURNED bit is not set, the I/O manager does not schedule the APC. 

 In both cases, control is then returned to the caller of IoCompleteRequest(). 

It is therefore important to understand that, in this scenario, the SL_PENDING_RETURNED bit must have 
been set before calling IoCompleteRequest(). Otherwise, the request will never complete, even though 
IoCompleteRequest is called, because its execution will not trigger the APC which finalizes the I/O. 

You can verify this by setting up the code in DispatchRead() so that it does the following: 

 calls IoCompleteRequest() 

 returns STATUS_PENDING 

The result is again a hung I/O operation, as it was when we did not call IoCompleteRequest(). 

On the other hand, if you set up DispatchRead() so that it: 

 calls IoMarkIrpPending() 

 calls IoCompleteRequest() 

 returns STATUS_PENDING 

The I/O works: ReadFile() returns ERROR_IO_PENDING, then GetOverlappedResult() finds the I/O 
completed soon thereafter (at last! - we have actually performed a test which does not mess up the test 
machine). 

It’s worth noting that the I/O manager decides wether to enqueue the APC or not solely on the basis of 
information stored inside the I/O stack location (i. e. the SL_PENDING_RETURNED bit). It does not rely on 
the STATUS_PENDING value returned by the dispatch routine. This makes sense because the call to 
IoCompleteRequest() can take place even before the dispatch routine returns (as in our test). 
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It’s also important to understand that, with the sequence of calls above, we must return STATUS_PENDING, 
even though we have already called IoCompleteRequest. This is necessary because we called 
IoMarkIrpPending(), so the execution of IoCompleteRequest() took note of the fact that the dispatch routine 
was returning STATUS_PENDING and enqueued the APC. If we return STATUS_SUCCESS now, we are 
not being consistent with what is going on inside the I/O manager and the system crashes. More on this 
later. 

This is what happens when a dispatch routine returns STATUS_PENDING, now we will see what happens 
when it returns STATUS_SUCCESS. 

Effect of The Dispatch Routine Returning STATUS_SUCCESS 

We already know that when we return STATUS_SUCCESS we must not call IoMarkIrpPending(), so how 
does the I/O complete in this case? 

[1] explains that, because of the STATUS_SUCCESS returned, the I/O manager executes the completion 
code (copy of the outcome into user mode address region, destruction of the IRP) in the thread which 
initiated the I/O, before returning to the caller. In other words, when the dispatch routine returns to the I/O 
manager, the latter calls the completion code because the return value from the dispatch routine is 
STATUS_SUCCESS; then it returns to the caller. 

So this is why the I/O complete even though IoCompleteRequest() does not enqueue the APC. 

Actually, [1] states that this is the behavior for most NTSTATUS values returned by the dispatch routine, as 
long as the returned value is not STATUS_PENDING. 

For instance, when we return an NTSTATUS indicating an error from a dispatch routine, we must not call 
IoMarkIrpPending(), but just setup the fields of IoStatus, call IoCompleteRequest() and return our 
NTSTATUS. In this case also, the outcome is synchronously copied into the user mode address region. 

Why Does The I/O Manager Handle The Returned NTSTATUS 
Like This 

As explained in [1], the concept behind this design is that, when the dispatch routine returns something 
different from STATUS_PENDING, the driver is telling the I/O manager that it has completely processed the 
request and already called IoCompleteRequest(). So the I/O manager can count on having at his disposal 
the outcome of the operation in the IRP (and the eventual data to copy, in case of buffered I/O) and 
completes the I/O immediately. 

The I/O manager must execute in the context of the thread which started the I/O, because it must copy data 
into the user mode address region of the calling process. The thread which called the dispatch routine is 
exactly the right one so the I/O manager code starts doing the job, as soon as it notices the return value is 
not STATUS_PENDING. 

On the other hand, when the dispatch routine returns STATUS_PENDING, it is telling the I/O manager that, 
at some other point in time it will perform the I/O and call IoCompleteRequest(), but this can happen at any 
time after the dispatch routine has returned, of even before it does. So the I/O manager does nothing upon 
receiving control from the dispatch routine and just returns the pending status to the caller. 

The I/O manager will enqueue the APC when the driver has completed the request, but only if the driver 
notifies it by setting the SL_PENDING_RETURNED inside the I/O stack location.  

The reason why an APC is used is also explained in [1]: APCs execute in the context of a specific thread, so 
this one is targeted to the thread which started the I/O, allowing the I/O manager to copy data into the user 
mode address region. 

It’s worth noting that if the user mode code performed the I/O asynchronously, the thread may be doing 
something else when the APC interrupt is acknowledged. The thread will then be diverted by the kernel to 
the I/O manager finalization code and the user mode code will see the effect of the completed I/O (e. g. 
event signaled inside the OVERLAPPED structure). 

From what we have seen so far, we know that the I/O manager determines its behavior from two pieces of 
information: the return value from the dispatch routine and the SL_PENDING_RETURNED bit in the I/O 
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stack location, when IoCompleteRequest is called. So far we are considering a stack made up of a single 
driver, so we have only one stack location. 

Not Following The IRP Completion Rules 

Now we can understand what happens if we misbehave. 

We have already seen that a driver which 

 does not call IoMarkIrpPending() 

 returns STATUS_PENDING 

 at some point in time (may be before returning STATUS_PENDING) calls IoCompleteRequest 

cause the I/O operation to never finish. 

Another case is 

 call IoMarkIrpPending() 

 call IoCompleteRequest() 

 return STATUS_SUCCESS 

The result is the I/O is completed by the APC code, because of the IoMarkIrpPending() call and then again 
when the dispatch routine returns and the I/O manager sees STATUS_SUCCESS. Actually, these two 
events could also take place in different order: first the dispatch routine returns and the IRP is completed, 
then the APC executes and the IRP is completed again. 

In both cases, this results in a bugcheck 0x44 (MULTIPLE_IRP_COMPLETE_REQUESTS), because an IRP 
cannot be completed twice. 

It’s even possible that the memory used by the IRP has already been reused by the time the second 
completion is attempted, so instead of the double completion bugcheck there could be every sort of strange 
behavior due to corruption of kernel memory. 

The scenario can be tested in two ways with the test code. 

First, it’s possible to set up DispatchRead so that it performs the sequence IoMarkIrpPending(), 
IoCompleteRequest(), return STATUS_SUCCESS. This usually results in bugcheck 0x44 while the client 
thread is still inside ReadFile(). 

Second, DispatchRead() also allows you to use a timer to schedule the call to IoCompleteRequest with a 10’’ 
delay. This ensures the dispatch routine returns first and the bugcheck occurs when the timer routine calls 
IoCompleteRequest(). 

This scenario is much more interesting, because the client process actually has time to terminate and report 
that ReadFile() executed just fine, because of the returned STATUS_SUCCESS. Then, without doing 
anything else, after about 10’’ the system crashes, apparently by itself (Who? Me? I wasn’t even running 
when it happened, your honor!). 

This leads to an interesting question: IoCompleteRequest() should enqueue an APC targeted at the thread 
which initiated the I/O, which, at the time IoCompleteRequest() is called, has terminated. So why do we get a 
bugcheck 0x44, as if the (vanished) thread were completing the IRP for the second time and not a different 
one, say a were-the-heck-is-my-thread bugcheck? 

If you take the time to step through IoCompleteRequest() with the debugger, you’ll discover that the first 
thing it does (inside a function named IopfCompleteRequest()) is to discover that the IRP has already been 
completed and raise bugcheck 0x44, way before enqueuing the APC. Thus, it is IoCompleteRequest() itself 
which checks for the double completion and not the code which would be executed by the APC, should we 
make it to it. At least this is what happens as of Windows XP SP 1. 
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Extension to A Stack of Layered Drivers 

I/O Manager Behavior 

So far the scenario was: a single driver called by the I/O manager. Now let’s see what happens when we 
have a driver stack, with IRPs passed down the stack with IoCallDriver(). 

The IoManager sees only the NTSTATUS value returned by the top level driver, so this is what determines 
wether the I/O must be completed immediately or not, as explained in [1]. So, as before, if the returned value 
is not STATUS_PENDING, the I/O is completed immediately, otherwise the pending status is returned to the 
caller. 

What needs more explanations is the behavior of IoCompleteRequest(). 

For now, let’s assume every layer in the stack has installed an I/O completion routine. 

It is a known fact that IoCompleteRequest causes all the completion routines attached to the different I/O 
stack locations to execute. [1] explains that, when each completion routine returns, IoCompleteRequest 
checks the SL_PENDING_RETURNED bit for the current stack location. If it’s set, it sets the Irp-
>PendingReturned field inside the IRP. 

Afterwards, there are two cases. 

1) The completion routine which returned was not the one of the topmost driver: IoCompleteRequest moves 
the stack pointer up one level and calls the completion routine for the next upper layer. This next completion 
routine can know wether SL_PENDING_RETURNED was set in the next lower stack location by looking at 
Irp->PendingReturned. 

It’s worth noting that the currently executing completion routine cannot look at the I/O stack location of the 
next lower driver, so it makes sense that the information represented by SL_PENDING_RETURNED is 
duplicated by setting PendingReturned inside the IRP, which is accessible by all layers. 

2) The completion routine which returned was the one of the topmost driver: IoCompleteRequest() looks at 
Irp->PendingReturned to decide wether to enqueue or not the completion APC. So, to be more accurate, 
IoCompleteRequest() does not look directly at the SL_PENDING_RETURNED bit to decide wether to 
schedule the APC or not, but rather at Irp->PendingReturned. 

Anyway, when IoCompleteRequest() reaches the topmost driver, SL_PENDING_RETURNED causes the 
APC to be enqueued, just as we saw in the one layer case. 

Returning an IRP from The Next Lower Level 

To understand the implications of this, consider a stack of two layers and suppose the upper driver has 
installed a completion routine. 

Now suppose for some I/O operation the topmost driver calls the lowest one and then wants to return the 
result to the I/O manager, without modifications. The dispatch routine for the topmost driver will be 
something like this example, copied from [2]: 

NTSTATUS 
YourDispatchRead(PDEVICE_OBJECT DeviceObject, 
      PIRP Irp) { 
 
 PIO_STACK_LOCATION ioStack; 
 PYOUR_DEV_EXT devExt; 
 
 ioStack = IoGetCurrentIrpStackLocation(Irp); 
 devExt = DeviceObject->DeviceExtension; 
    
 // 
 // you do some validation here 
 // 
 IoCopyCurrentIrpStackLocationToNext(Irp); 
 
 // 
 // Maybe you manipulate some of the IRP 
 // stack parameters here. 
 // 
 return(IoCallDriver(devExt->LowerDriver, Irp)); 
} 
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Now suppose the lower driver returned STATUS_PENDING. The topmost driver is returning the same value 
to the I/O manager. This means it must also set the SL_PENDING_RETURNED bit inside its I/O stack 
location. In the end, it is the topmost stack location which will cause the I/O manager to schedule the APC 
which completes the I/O. This comes from the behavior of IoCompleteRequest() outlined above (explained in 
[1]): when, and only when, the topmost completion routine returns, the I/O manager checks Irp-
>PendingReturned to see if it has to enqueue the APC. 

So the upper driver must call IoMarkIrpPending(). As explained both in [1] and in [2], it cannot do it this way 
(example copied from [2]): 

status = IoCallDriver(devExt->LowerDriver, Irp); 
 
 if (status == STATUS_PENDING) { 
  IoMarkIrpPending(Irp); 
 } 
 
 return(status); 

 

Because, after the call to IoCallDriver, the code cannot touch the IRP anymore. For instance, the call to 
IoCompleteRequest from the lower driver could already have happened. 

But, as [1] and [2] explain, inside its completion routine the upper driver can: 

1) legally access its own stack location. 

2) know wether the lower level returned STATUS_PENDING, because it can check Irp->PendingReturned. 

So the completion routine could be like this (sample copied from [2]): 

 [...] 
 If(Irp->PendingReturned) { 
  IoMarkIrpPending(Irp); 
 } 
 
 return(STATUS_SUCCESS);  

 

This passes the I/O manager a consistent set of information: on one hand, the topmost dispatch routine 
returns STATUS_PENDING. On the other hand, the topmost I/O stack location has 
SL_PENDING_RETURNED set by the time the topmost completion routine returns. 

The information seen by the I/O manager is consistent also for return values other than STATUS_PENDING: 
the SL_PENDING_RETURNED bit will not be set. 

The upper driver can safely pass the IRP up to the I/O manager, regardless of how the lower driver 
completes it: synchronously or asynchronously. 

Now consider a stack made of an arbitrary number of layers, suppose our upper one is somewhere in the 
middle and analyze the STATUS_PENDING case. In this scenario, our upper driver is receiving these two 
pieces of information from the one below itself: 

 the dispatch routine returns STATUS_PENDING 

 by the time our completion routine is called, Irp->PendingReturned is set. 

By behaving like it does, it is returning the very same information to the level above itself: it’s returning 
STATUS_PENDING and its SL_PENDING_RETURNED bit set will cause Irp->PendingReturned to be set 
when the upper level completion routine will be called. 

The upper driver is being “transparent”: the driver above it receives the same status it would have received, if 
it had called the lower driver directly. 

So we can have an arbitrary number of driver behaving this way and the result is the completion status 
correctly bubbles up to the I/O manager, which will complete the IRP in a proper way. 

It is worth noting how, in this scenario, every driver in the stack calls IoMarkIrpPending(). This is different 
from IoCompletRequest(), which is called only once by the lowest driver. 

General Rules for IRP Completion 

Now consider a more generic scenario, where drivers in the stack does not necessarily pass up IRPs 
transparently, but manipulate them, maybe create new ones, etc. 
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Suppose each driver in the stack observe these rules: 

 if the dispatch routine returns to the upper level STATUS_PENDING, SL_PENDING_RETURNED 
must be set in the driver’s stack location by the time IoCompleteRequest() examines it. 

Note that: 

 if the driver is the one calling IoCompleteRequest(), this means it must call IoMarkIrpPending() 
before the former call. 

 otherwise, IoCompleteRequest() looks at the stack location for the driver when its completion 
routine returns (if any; for now we go on assuming there is one). So, this completion routine 
must call IoMarkIrpPending() before returning. 

This rule means: by the time IoCompleteRequest() gets to the upper level, Irp->PendingReturned 
will be set. 

 if the dispatch routine returns any other value, SL_PENDING_RETURNED is cleared by the time 
IoCompleteRequest() examines it. 

These two rules imply that: 

 if the layer above the driver is the I/O manager, it will properly complete the operation 

 otherwise the upper layer is another driver, which has enough information to decide what to do (may 
be it created the IRP itself and will wait for its completion). 

The code we saw, which passed the IRP result transparently to its upper level, is written to satisfy these 
rules, both when the lower level returns STATUS_SUCCESS and when it returns STATUS_PENDING. It is 
the implementation of these rules when we want to just pass the IRP to whoever is above us. 

[2] explains how drivers must actually conform to a set of rules which imply the two outlined above. 

Indeed, since the NT architecture is based on layered drivers and allows for the insertion of filter drivers in 
the middle, there must be a set of rules each layer follows, so that a new driver inserted somewhere know 
what to expect from the driver beneath itself. The rules outlined here make sense because, to the core, they 
amount to this: each layer must behave as if it had the I/O manager above itself. 

Up until now, we assumed every driver in the stack installed a completion routine. Both [1] and [2] explains 
that when a driver does not, IoCompleteRequest() does the following: it behaves as if there was a 
completion routine like this (code fragment copied from [2]): 

 [...] 
 If(Irp->PendingReturned) { 
  IoMarkIrpPending(Irp); 
 } 
 
 return(STATUS_SUCCESS);  

 

So IoCompleteRequest() automatically “propagates” the pending status if a completion routine is not set. 
This allows drivers who don’t set completion routines and do 

 return(IoCallDriver(devExt->LowerDriver, Irp)); 

 

to work correctly. 

The Sample Code 

The sample code package contains a Visual C++ Express solution. 

You don’t need to have VS installed to edit the code and build the driver. The solution projects can just be 
regarded as subfolders of the overall source tree and all the building is done with the DDK build utility or the 
SDK nmake tool. VS can be used as a text editor and to access the various files through the Solution 
Explorer window, but this is not required. 

 



10 

 

Building The Sample Code 

The test driver comes with the scripts needed to build it with the build utility, executed in one of the DDK 
build environment windows. Just move to the directory Driver\WxpBuild and run build. A “clean” target is 
provided as well, so that running 

 build –clean 

will throw away everything from a previous build. 

As for the test client, a makefile can be found in the directory named TestClt, which can be used to build it 
with nmake, from a standard SDK build environment which must include the settings for Visual C++. 

Loading And Running The Driver 

The test client does not load the driver by itself, so some loading utility is needed. 

The one I use and I find very handy is w2k_load.exe by Sven B. Schreiber, originally found on the 
companion CD of his book, Undocumented Windows 2000 Secrets. The CD image can be downloaded from 
Mr. Schreiber site at: 

http://undocumented.rawol.com/ 

In spite of having been written for Windows 2000, w2k_load still works like a breeze under XP and Vista. 

Loading the driver is as simple as entering 

 W2k_load IoCompl.sys 

And to unload it: 

 W2k_load IoCompl.sys /unload 

 

http://undocumented.rawol.com/


11 

 

References 

 [1] Secrets of the Universe Revealed! - How NT Handles I/O Completion; The NT Insider, Vol 4, Issue 3, 
May-Jun 1997; available at http://www.osronline.com/article.cfm?id=83 (registration required) 

[2] Properly Pending IRPs - IRP Handling for the Rest of Us; The NT Insider, Vol 8, Issue 3, May-Jun 2001; 
available at http://www.osronline.com/article.cfm?id=21 (registration required) 

[3] The Truth About Cancel - IRP Cancel Operations (Part I/II), The NT Insider, Vol 4/5, Issue 6/2, Nov-Dec 
1997/ Mar-Apr 1998; available at http://www.osronline.com/article.cfm?id=78 (registration required) 

http://www.osronline.com/article.cfm?id=83
http://www.osronline.com/article.cfm?id=21
http://www.osronline.com/article.cfm?id=78

